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ABSTRACT Pathogenic fungi have become a global concern to wildlife populations over the last 2 decades.
However, the threat of snake fungal disease (SFD; caused by Ophidiomyces ophiodiicola) to snake populations
is still largely unknown. From 2014–2016, we monitored 3 disjunct populations of the federally threated
eastern massasauga (Sistrurus catenatus) in Michigan, USA. We used clinical signs of SFD, quantitative
TaqMan polymerase chain reaction (qPCR), repeated sampling of individuals and sites, and single-season
occupancy models to estimate site-specific prevalence of Ophidiomyces. Point estimates of Ophidiomyces
prevalence in 2016 were larger at the northernmost study site (0.17, 95% CI¼ 0.04–0.50), where 17 of 34
snakes were implanted with radio-transmitters, and smaller at southern sites (0.03, 95% CI¼ 0.00–0.19).
However, Ophidiomyces prevalence was not different between snakes with transmitters and snakes without
transmitters. Swabbing snakes with 1 applicator resulted in a high probability of failure in detecting
Ophidiomyces DNA for individuals with clinical signs of SFD and the probability was even higher for
individuals without clinical signs of SFD. Repeated sampling of individuals reduced the probability of
obtaining a false-negative qPCR result by 72% for snakes with clinical signs and 12% for snakes without
clinical signs when we swabbed individuals with 5 applicators. We recommend resampling individuals and
sites as a sampling design for estimating fine-scale, site-specificOphidiomyces prevalence and population-level
responses to SFD. If clinical signs are used as a surrogate for SFD, we recommend researchers standardize
diagnosis of clinical signs of SFD by providing technicians adequate field training and educational materials,
and minimize the number of observers recording clinical signs. We discourage the use of radio-telemetry
methods where SFD occurs unless sterile surgical, handling, and equipment protocols can be ensured and the
benefits to the population from such activities outweigh the increased health risks to individuals.� 2017 The
Wildlife Society.

KEY WORDS disease prevalence, false negatives, Michigan, occupancy models, Ophidiomyces ophiodiicola, qPCR,
radio-telemetry, Sistrurus catenatus, snake fungal disease.

Over the past 2 decades, pathogenic fungi have become a
global threat to wildlife populations (Fisher et al. 2012). Two
striking examples are the widespread global amphibian
declines from chytridiomycosis, caused by the amphibian
chytrid fungus (Batrachochytrium dendrobatidis; Berger et al.
1998, Lips et al. 2006, Kilpatrick et al. 2010), and declines in

bat populations in the eastern United States from white-nose
syndrome, caused by a psychrophilic fungus (Pseudogym-
noascus destructans; Blehert et al. 2009, Frick et al. 2010,
Lorch et al. 2011). Although numerous taxa in addition to
amphibians and bats are affected by fungal pathogens,
estimates of disease prevalence, pathogen prevalence on
hosts, and population-level responses to these pathogens are
lacking or poorly understood in many species (Fisher et al.
2012, Allender et al. 2016a).
A fungal pathogen causing growing concern isOphidiomyces

ophiodiicola, the species responsible for snake fungal disease
(SFD; Lorch et al. 2015, Allender et al. 2015a). The earliest
known record of SFD is from amuseum specimen collected in
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2000 from southern Illinois (Allender et al. 2016b). Snake
fungal disease has now been recorded in 6 snake families
representing over 30 species throughout most of the eastern
half of the United States and captive snakes in parts of the
United Kingdom, Germany, and Australia (Tetzlaff et al.
2015,Allender et al. 2015d, Lorch et al. 2016).Mortalities due
to SFD have been reported for several snake species (Allender
et al. 2013, Sigler et al. 2013, Sleeman 2013). However, a
population-level response (decline) where SFD was suspected
(along with other contributing factors such as inbreeding
depression and high summer rainfall) has been documented
only once, in a New Hampshire population of timber
rattlesnakes (Crotalus horridus; Clark et al. 2011). Thus, the
long-term effects of SFD on snake populations are largely
unknown.
Knowledge of O. ophiodiicola ecology (Allender et al.

2015d, McCoy et al. 2017), geographic distribution
(Allender et al. 2015d, Lorch et al. 2016), detection
(Allender et al. 2016a), pathogenesis (Lorch et al. 2015,
Allender et al. 2015a), and snake hematology (Allender et al.
2015c, 2016b) has increased over the last few years. However,
unbiased estimates of O. ophiodiicola prevalence in host
populations are still lacking. To date, investigators have
relied on raw counts ofOphidiomyces presence or absence data
as proxies for Ophidiomyces prevalence in host populations
(Allender et al. 2016a). Although such data provide useful
information, they are expected to underestimate Ophidio-
myces prevalence within populations because the methods
used to detect Ophidiomyces DNA (e.g., fungal cultures,
polymerase chain reaction [PCR], quantitative PCR
[qPCR]) yield false negatives (Lorch et al. 2016, Allender
et al. 2016a). Unbiased estimation of Ophidiomyces preva-
lence is an important step to quantifying population-level
responses to SFD.
Because of their secretive nature, eastern massasaugas

(Sistrurus catenatus) and other snake species are often studied
using radio-telemetry methods (Reinert and Cundall 1982,
Webb and Shine 1997, Moore and Gillingham 2006). These
methods typically involve intracoelomic implantation (Webb
and Shine 1997), which disrupts the skin and body cavity and
can therefore provide a portal for pathogenic fungus to enter
the body. In addition, radio-telemetry surgery can induce
post-surgery immune suppression due to infection (Lentini
et al. 2011). Consequently, snakes implanted with radio-
transmitters may be at higher risk of Ophidiomyces
colonization than snakes without radio-transmitters.
Our objective was to estimate Ophidiomyces detection and

occupancy (i.e., prevalence) probabilities for 3 eastern
massasauga populations in Michigan, USA, a federally
threatened rattlesnake species under the United States
Endangered Species Act (U.S. Fish and Wildlife Service
[USFWS] 2016). We hypothesized that Ophidiomyces
occupancy probabilities would be largest at the site where
na€ıve counts of individuals carrying Ophidiomyces DNA was
highest, snakes with radio-transmitters would have higher
Ophidiomyces occupancy probabilities than snakes without
radio-transmitters, and repeated sampling of individuals
would reduce the probability of obtaining a false-negative

result. Based on previous work (Allender et al. 2016a), we
also hypothesized that snakes with clinical signs of SFD
would have higher Ophidiomyces DNA detection probabili-
ties than snakes without clinical signs.

STUDY AREA

The study area included 3 disjunct eastern massasauga
populations in Michigan (Fig. 1). These populations
included the Edward Lowe Foundation (ELF) in Cass
County, Pierce Cedar Creek Institute (PCCI) in Barry
County, and Camp Grayling (CG) in Crawford and
Kalkaska counties (Fig. 1). Michigan has a temperate
continental climate with no dry season (Belda et al. 2014).
Because of their proximity (Fig. 1), the ELF and PCCI
sites share similar annual climate averages (air temp
¼ 8.44, 8.788C; precipitation¼ 950.47, 1,034.80mm;
frost-free days¼ 171, 175, respectively), whereas the
more northern CG site is cooler (air temp¼ 5.788C),
drier (precipitation¼ 853.69mm), and has fewer frost-free
days (131; 1981–2010 normals; stations USC00202250,
USC00203661, and USC00203391; National Oceanic and
Atmospheric Administration [NOAA] 2017). Monthly
average temperatures during the primary sampling periods
for the study (Apr–Jun 2014–2016) ranged from 7.2–
20.68C (ELF), 6.8–20.28C (PCCI), and 3.3–18.18C (CG;
stations USC00202250, USC00203661, and
USC00203391; Midwestern Regional Climate Center
[MRCC] 2017). Elevation is similar between ELF (244–
280m) and PCCI (259–266m) and higher at CG
(371m; U.S. Geological Survey [USGS] 2017).
The ELF study area (�64.3 ha) was nested within a

privately owned and managed 1,052-ha parcel and consisted

Figure 1. Counties of the eastern massasauga study localities, Michigan,
USA, 2014–2016: Cass County (black), Barry County (white), and
Crawford and Kalkaska counties (diagonal stripes).
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of a composite of wetland (bisected by a creek), prairie, and
woodland habitats surrounded by cropland and developed
areas. Receding glaciers shaped the topography of the site,
creating a valley system that retained a spring-fed kettle lake
(�4 ha) and multiple ponds, streams, and natural springs.
The survey area was chiefly calcareous fen and marshes
dominated by graminoids (e.g., Carex spp.), cattails (Typha
spp.), common reed (Phragmites spp.), and woody species
including tamarack (Larix laricina), willow (Salix spp.),
cinquefoil (Dasiphora fruticosa), and poison sumac (Tox-
icodendron vernix). Fauna inventoried at the site included 31
reptile and amphibian species and >100 bird species.
The PCCI study site was within a privately owned parcel of

land (�277 ha) primarily composed of wetlands, forest,
prairie, old-field, and developed sites. Additionally, PCCI
functioned as a biological research station, education center,
and nature center with trails open to the public and was
bisected by a public dirt road. The site’s topography was
formed by a retreating glacier and included low-lying
wetlands bordering a kettle lake (�5 ha) and third-order
creek. The survey area (�23.1 ha) was primarily prairie fen
habitat and adjacent uplands dominated by graminoids,
cattails, goldenrod (Solidago spp.), asters (Aster spp.), and
woody species including tamarack, dogwood (Cornus spp.),
willow, and poison sumac. The site was home to diverse
fauna, with 16 reptile species, 14 amphibian species, 33
mammal species, and 131 bird species documented.
The CG site was located within the Camp Grayling Joint

Maneuver Training Center (59,488 ha), the largest National
Guard training facility in theUnited States. Local topography
was shaped by the most recent glaciation and water bodies
found on the landscape included glacial lakes, creeks, and
rivers. Both the broader Camp Grayling training facility and
the survey site was composed of coniferous and hardwood
forests containing mainly spruce (Picea spp.), cedar (Thuja
spp.), pine (Pinus spp.), maple (Acer spp.), oak (Quercus spp.),
and aspen (Populus spp.) stands; barrens dominated by lichen
and blueberry (Vaccinium spp.); and scrub-shrub wetlands
comprised of graminoids (e.g., Carex spp., Eleocharis spp.),
forbs and herbs (e.g., Matteuccia struthiopteris), and woody
species such as willow and speckled alder (Alnus incana).
Limited survey efforts indicated >103 bird species and 26
reptile and amphibian species inhabited the base.

METHODS

From 2014–2016, we conducted visual or radio-telemetry
surveys at the 3 study sites. We surveyed sites during the
species’ active season from 6 May–6 August (2014), 30
April–29 August (2015), and 23 April–25 October (2016).
We used visual surveys, cover objects, and drift fences with
funnel traps and captured snakes with tongs using sterile
handling and equipment protocols (Rzadkowska et al. 2016).
We uniquely marked individuals via subcutaneous passive
integrated transponders (PIT) or by painting rattle segments
(Gibbons and Andrews 2004). We recorded snout-vent
length (SVL, cm) and mass (g), and identified sex by cloacal
probing (Schaefer 1934). We defined adults as SVL �45 cm
and juveniles as SVL <45 cm (Allender et al. 2016a).

We inspected all animals for clinical signs consistent with
SFD (e.g., presence of crusts, displaced scales, nodules,
swelling, caseous discharge from skin pustules; Allender et al.
2015d). We recorded clinical signs as a binary variable:
present (1) or absent (0). We used sterile cotton-tipped or
flocked applicators to swab the epidermis of each animal. In
2014 and 2015, we swabbed the heat-pits of all individuals
and active lesion sites (if present) so that all snakes were
swabbed with �1 applicator. In 2016, we modified our
sampling protocol to include multiple swab applicators (�5),
swabbing snakes at discrete locations on the body, including
the dorsum, ventrum, flanks, and sites of lesions (including
heat-pits). We released snakes at their site of capture within
24 hours.We stored samples in 2-ml Eppendorf tubes, frozen
at �208C, and sent batches to the Wildlife Epidemiology
Laboratory at the University of Illinois (Urbana, IL, USA).
We performed DNA extraction and quantitative TaqMan
PCR amplification (qPCR) as previously reported (Allender
et al. 2015b). Briefly, we ran each sample in triplicate on a
plate with 7 serial positive dilutions and a non-template
control as a negative control using a real-time thermocycler
(ABI 7500, Life Technologies, Carlsbad, CA, USA). We
evaluated the slope of each plate as previously described
(Allender et al., 2015b) and considered samples positive if all
3 replicates had a lower cycle threshold (Ct) value than the
lowest detected standard dilution. This research was
approved under Michigan Scientific Collector’s Permits
and the following Institutional Animal Care and Use
Committees: Northern Illinois University, DeKalb, Illinois
(no. LA10-001); Indiana�Purdue University Fort Wayne,
Fort Wayne, Indiana (no. 1112000451); Grand Valley State
University, Allendale, Michigan (no.13-02-A); and Lincoln
Park Zoo, Chicago, Illinois (no. 2015-013).

Single-Season, Single-Species Occupancy Models
We used single-season, single-species occupancy models to
estimate Ophidiomyces DNA detection and occupancy
probabilities (i.e., Ophidiomyces prevalence corrected for
imperfect detection). These models use presence-absence
data to estimate occupancy (ci; the probability that the
species is present at site i) and detection probability (pij ; the
probability that the species is detected at time i at site j, given
the species is present at site j; MacKenzie et al. 2002). We
defined species as Ophidiomyces DNA and site as an eastern
massasauga from a given locality (ELF, PCCI, or CG) that
had been swabbed with �1 applicator. For snakes that were
repeatedly sampled, we collected all replicate swab applica-
tors on a single date for a given individual.
Although clinical signs of SFD are positively associated

with Ophidiomyces DNA detection probabilities (Allender
et al. 2016a), SFD diagnosis based on qPCR results and
descriptive characteristics includes some uncertainty, espe-
cially for animals that are positive for OphidiomycesDNA but
do not present clinical signs of SFD. Therefore, we modeled
Ophidiomyces prevalence rather than directly modeling SFD
prevalence. This required interpretation of the various
combinations of Ophidiomyces DNA presence-absence and
clinical signs of SFD presence-absence (Fig. 2).Ophidiomyces
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prevalence refers to the fraction of the population comprised of
individuals that have SFD and individuals that do not have SFD
but are positive for Ophidiomyces (Fig. 2).
We used an information-theoretic approach and multi-

model inference to evaluate multiple competing hypotheses
that explained detection and occupancy probabilities of
Ophidiomyces (Burnham and Anderson 2002, Anderson
2008). For model selection, we used Akaike’s Information
Criterion adjusted for small sample size (AICc; Akaike
1973). Unless the top-ranked model received �90% of the
AICc weight, we used model averaging and unconditional
standard errors to account for model and parameter estimate
uncertainty (Burnham and Anderson 2002). We used profile
likelihood confidence intervals for model-averaged point
estimates (White and Burnham 1999) and analysis of
deviance (ANODEV) to assess model fit. Analysis of
deviance is analogous to r2 for models using maximum
likelihood methods (Harris et al. 2005). To ensure that we
sampled comparably across populations and years, we used
analysis of covariance to test if SVL of swabbed individuals
differed between years and populations. For frequentist
statistics, we set a¼ 0.05. We conducted all statistical
analyses using Program MARK version 8.1 (www.phidot.
org/software/mark/downloads/index.html, accessed 1 Jul
2016; White and Burnham 1999) and SPSS Version 18.0
(SPSS, Chicago, IL, USA). We used the ggplot2 package
(Wickham 2009) in R version 3.3.2 (www.r-project.org,
accessed 1 Nov 2016) to graphically depict data.
For our occupancy analysis, we first constructed capture

histories for all swabbed snakes, where 1 indicated a snake
tested positive for Ophidiomyces DNA at time i (i.e.,
applicator i), 0 indicated a snake tested negative for
Ophidiomyces DNA with applicator i, and a dot (.) indicated
that a snake was not swabbed with applicator i. We treated
year as a classification factor with 3 levels so the dataset
spanning 2014–2016 could be included and analyzed

simultaneously in a single-season framework. Furthermore,
we truncated the 2016 data to include only swab applicators
collected from 23 April–18 June so the assumption of closure
for each population could be reasonably approximated. In
other words, each snake was sampled during a single date,
but we could not sample all snakes on the same date.
Therefore, we assumed that snakes did not change in
Ophidiomyces status from 23 April–18 June. Because
recaptures of individual snakes (i.e., sites) were rare and
non-telemetered individuals at CG were not uniquely
identified between years, multi-season occupancy modeling
was not possible. Our sampling methods were consistent
between 2014 and 2015, but were sparse for repeated samples
of individuals, whereas sampling methods in 2016 were more
intensive (replicate swab applicators for individuals in-
creased) and comprehensive (additional areas of the body
were sampled) than the previous 2 years. Therefore, we
attempted to estimate occupancy only for 2016. To model
the disparate sampling years (2014 and 2015 vs. 2016) and to
address data sparseness in the first 2 years, we considered a
reduced time model that treated Ophidiomyces detection
probability as constant (i.e., equal) between 2014 and 2015
but allowed detection probability to differ in 2016. In
addition, Allender et al. (2016a) previously demonstrated
that clinical signs of SFD are a reasonable predictor of
OphidiomycesDNA detection. Thus, we also included clinical
signs (CS) as a covariate to explain detection probability.
This resulted in 4 detection probability models (Table 1).
For 2014 and 2015, we treated occupancy cð Þ probabilities

as a single nuisance parameter and held it constant across
localities for these years to reduce the number of estimated
parameters. This allowed us to estimate detection probabili-
ties for all 3 years and occupancy in 2016, where data were
most abundant. For 2016 c probabilities, we considered a
population locality effect. Because of sparseness of Ophidio-
myces DNA presence data at ELF and PCCI, we treated

Figure 2. Combinations of Ophidiomyces DNA presence-absence and
clinical signs of snake fungal disease (SFD) presence-absence in eastern
massasaugas, Michigan, USA, 2014–2016. The dashed arrows indicate
pathways that cannot be decoupled using the single-season, single-species
occupancy model. Thus, an individual positive for Ophidiomyces DNA but
lacking clinical signs is interpreted as either having early stage SFD or being
SFD negative but exposed to the disease causing pathogen.

Table 1. Ophidiomyces DNA detection (p) and occupancy (c) probability
models considered using 2014–2016 data collected from easternmassasaugas
at Camp Graying (CG), the Edward Lowe Foundation (ELF), and Pierce
Cedar Creek Institute (PCCI), Michigan, USA. Detection is modeled by
period as a function of clinical signs (CS) or as a constant (.). Occupancy is
modeled for 2016 only.

Probability model Model interpretation

Detection
p [(CS)2014, 2015, (CS)2016] Detection varies between years and

between individuals based on the
presence or absence of clinical signs.

p [(.)2014, 2015, (CS)2016] Detection varies between years and
between individuals based on the
presence or absence of clinical signs
(2016 only).

p [(CS)2014, 2015, (.)2016] Detection varies between years and
between individuals based on the
presence or absence of clinical signs
(2014 and 2015 only).

p [(.)2014, 2015, (.)2016] Detection varies between years only.
Occupancy
c (CG 6¼ELF¼PCCI) Occupancy at CG is different than

occupancy at ELF and PCCI.
c (.) Occupancy is constant across localities.
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these localities as having equal c but allowed CG c to vary
from the other 2 localities because na€ıve estimates (i.e., the
ratio of positive animals/total animals sampled using
uncorrected count data) of Ophidiomyces prevalence based
on qPCR results were largest at CG. This resulted in 2
models that explained occupancy in 2016 (Table 1).
Considering all iterations of these detection and occupancy
parameterizations resulted in 8 candidate models (Table 2).

The Probability of Obtaining a False Negative (1�p)
False negatives can occur when a swab fails to capture
Ophidiomyces DNA (when it actually is present on the
animal), when Ophidiomyces DNA is not extracted from a
positive sample, or whenDNA fails to amplify during qPCR.
To estimate the probability of acquiring a false-negative
result (i.e., 1�p), we used the c parameterization of the top
ranked model from the previous analysis. For the detection p
parameter, we used clinical signs as a covariate to explain
Ophidiomyces detection probability and treated time as
constant across years so that estimates of false negatives
would be generalized rather than applicable to a single year.
Because our interest was in estimating false-negative
probabilities rather than occupancy, we used the complete
dataset and treated occupancy as a nuisance parameter. Using
a likelihood ratio test, we compared the clinical signs
detection model with a null model that treated Ophidiomyces
detection as constant among snakes. Based on the favored
model from the likelihood ratio test, we calculated the
cumulative probability of obtaining a false-negative result
from using (T) surveys: (1�p)T, where p is the single survey
detection probability and T is the number of applicator swabs
analyzed (K�ery 2002, Halstead et al. 2011). We approxi-
mated the variance using the delta method (Seber 1982).

Radio-Transmitter Effects on Ophidiomyces Prevalence
Using only the CG locality 2014–2016 data, the locality
where all but 3 snakes implanted with radio-transmitters
were from (n¼ 25), we considered a single-season occupancy
model that included a radio-transmitter effect as a way to
explain Ophidiomyces prevalence and treated detection as
constant across years. We modeled the radio-transmitter

effect as a binary covariate (present or absent). We assigned
snakes swabbed prior to radio-transmitter surgery a 0 for no
radio-transmitter effect, and assigned snakes swabbed the
season after radio-transmitter surgery a 1 for a radio-
transmitter effect. We compared the radio-transmitter effect
model with a null model that treatedOphidiomyces prevalence
as constant between snakes with and without radio-
transmitters using a likelihood ratio test.

RESULTS

Across localities, we collected 118 swab applicators from 100
snakes in 2014, 117 applicators from 92 snakes in 2015, and 535
applicators from 105 snakes in 2016 (Table 3). Thirteen
individuals (19applicators) testedpositive forOphidiomyces.Eight
of these individuals (13 applicators) had clinical signs of SFD.
Using locality as a fixed factor and year as a random factor, mean
SVL (52.6� 6.5 [SD]) did not differ across localities
(F2, 4¼ 0.358, P¼ 0.718), years (F2, 4¼ 0.275, P¼ 0.772), or
by an interaction between these 2 variables (F4, 280¼ 1.105,
P¼ 0.354). The percentage of sampled snakes with documented
skin lesions ranged from 0 to 61.1% across years and localities
(Table3).Thepercentageof sampled snakeswithqPCR-positive
results rangedfrom0to13.3%acrossyearsandlocalities (Table3).

Single-Season, Single-Species Occupancy Models
In 2016, we sampled 34 individuals (184 applicators) at CG,
35 individuals (171 applicators) at ELF, and 36 individuals
(180 applicators) at PCCI. At CG, we usually swabbed each
snake with 5 applicators, with sample size ranging from 1–9/
individual. At ELF, we swabbed 34 snakes with 5 applicators
each, and swabbed 1 snake with a lesion once. At PCCI, we
swabbed 36 snakes with 5 applicators each. We excluded 13
individuals from CG, including 1 that tested positive for
Ophidiomyces, from the occupancy analysis when we
truncated the data to meet the assumption of closure.
Despite reasonable sample sizes, the data were temporally
insufficient to model seasonal effects of Ophidiomyces.
Of the 8 models considered in our occupancy analysis, only

the top 4 models garnered support based on AICcweight (wi;
Table 2). The top-ranked model (model 1) received 0.55

Table 2. Candidate single-season occupancy models for eastern massasaugas considered using 2014–2016 data collected from Camp Graying (CG), the
Edward Lowe Foundation (ELF), and Pierce Cedar Creek Institute (PCCI), Michigan, USA. The single nuisance occupancy parameter for 2014–2015 (not
shown) contributes 1 parameter (K) to each model below.We modeled detection probability (p) by period as a function of clinical signs (CS) or as a constant (.)
and modeled occupancy (c) for 2016 only.

Model AICc
a DAICc

b wi
c K Devianced ANODEVe

1) p [(CS)2014, 2015, (.)2016]c (CG 6¼ELF¼PCCI) 133.44 0.00 0.55 6 �74.01 0.97
2) p [(CS)2014, 2015, (CS)2016] c (CG 6¼ELF¼PCCI) 134.89 1.45 0.26 7 �74.67 1.00
3) p [(CS)2014, 2015, (.)2016]c (.) 136.34 2.90 0.13 5 �69.03 0.75
4) p [(CS)2014, 2015, (CS)2016] c (.) 137.85 4.41 0.06 6 �69.60 0.78
5) p [(.)2014, 2015, (.)2016]c (CG 6¼ELF¼PCCI) 148.31 14.87 0.00 5 �57.05 0.22
6) p [(.)2014, 2015, (CS)2016]c (CG 6¼ELF¼PCCI) 149.75 16.30 0.00 6 �57.71 0.25
7) p [(.)2014, 2015, (.)2016]c (.) 151.23 17.78 0.00 4 �52.07 0.00
8) p [(.)2014, 2015, (CS)2016]c (.) 152.72 19.28 0.00 5 �52.64 0.03

a Akaike’s Information Criterion corrected for sample size¼�2log(L (u| x)þ 2Kþ 2(K (Kþ 1))/(n�K� 1), where n is the sample size and K is the number
of parameters in the model.

b AICc difference between model i and the top-ranked model.
c Probability that model i is the best model given the data and alternative models in the candidate set.
d Adjusted difference in �2log (L) of the current model and �2log (L) of the saturated model.
e Analysis of deviance explains model fit relative to the global model.
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AICc weight and explained 0.97 of the model deviance
(ANODEV), using 1 fewer parameter than the global model
(Table 2). Model 1 included clinical signs of SFD to explain
OphidiomycesDNA detection probabilities in 2014 and 2015
but held detection probabilities constant between individuals
with and without clinical signs in 2016. Occupancy for model
1 also included a locality effect that treated occupancy
probabilities at ELF and PCCI as equal but allowed CG to
differ in occupancy from the other localities. Models 2 and 4
were identical to models 1 and 3, respectively, but included
clinical signs of SFD as an explanatory variable for
Ophidiomyces DNA detection probabilities for 2016. We
considered clinical signs as an explanatory variable for 2016
to be uninformative for models 2 and 4 because the deviance
for each model decreased by fewer than 2 units when
compared to their nested counterparts (i.e., models 1 and 3;
Anderson 2008). Thus, model 2 absorbed 0.26wi that would
have otherwise gone to model 1. Model 3 received little
support (wi¼ 0.13) and was identical to model 1 in detection
probabilities but treated occupancy as constant across
localities. Model 4 was a generalization of model 3, but as
mentioned above, included the uninformative variable
clinical signs for 2016. Thus, the marginal support
(wi¼0.06) model 4 received would have been allocated to
model 3 if not for the presence of this pretending variable
(Anderson 2008, Arnold 2010).
Model averaging across the candidate models (excluding

models 2 and 4, the uninformative embellishments of models
1 and 3) resulted in Ophidiomyces DNA detection
probabilities that were higher for snakes with clinical signs
of SFD (0.23, 95% CI¼ 0.08–0.51) than for snakes without
clinical signs of SFD (0.01, 95% CI¼ 0.00–0.09) for 2014
and 2015. However, detection probabilities in 2016 were
indistinguishable between snakes with clinical signs of SFD
and snakes without clinical signs of SFD (0.22, 95%
CI¼ 0.08–0.48). Point estimates of Ophidiomyces prevalence
in 2016 were larger at CG (0.17, 95% CI¼ 0.04–0.50) than
at ELF and PCCI (0.03, 95% CI¼ 0.00–0.19).

The Probability of Obtaining a False Negative (1�p)
Snakes with clinical signs that were swabbed with only 1
applicator had a high probability ofOphidiomycesDNAbeing
missed (0.73, 95% CI¼ 0.53–0.86), whereas for snakes
without clinical signs, the probability of obtaining a false
negative was even higher (0.97, 95% CI¼ 0.91–0.99;
likelihood ratio test, x2

1 ¼ 14.804, P< 0.001; Fig. 3).
Increasing the number of swab applicators collected per
snake from 1 to 5 reduced the probability of obtaining a false
negative by 72% (0.20, 95% CI¼ 0.06–0.53) for snakes with
clinical signs and only by 12% (0.85, 95% CI¼ 0.63–0.95)
for snakes without clinical signs (Fig. 3).

Radio-Transmitter Effects on Ophidiomyces Prevalence
Uncorrected or naive estimates of Ophidiomyces prevalence at
the CG locality were 0.16 (4 positive, 21 negative) for snakes

Table 3. Descriptive statistics for Ophidiomyces surveillance in 3 populations of eastern massasaugas using quantitative polymerase chain reaction (qPCR) of
swab applicators. Samples are from Camp Graying (CG), the Edward Lowe Foundation (ELF), and Pierce Cedar Creek Institute (PCCI), Michigan, USA.
Values in parentheses for sex and age class indicate number of individuals with unknown status.

CG ELF PCCI

2014
Sex F/M 12/20 (2) 15/10 20/23
Age class Adult/juveniles 30/4 22/3 38/5
Skin lesions n (%) 5 (14.7) 1 (4.0) 7 (16.3)
qPCR positive n (%) 2 (5.9) 2 (8.0) 1 (2.3)
qPCR positive and skin lesions n (%) 2 (5.9) 0 (0) 1 (2.3)

2015
Sex F/M 7/8 6/10 36/25
Age class Adult/Juveniles 15/0 15/1 50/11
Skin lesions n (%) 2 (13.3) 0 (0) 6 (9.8)
qPCR positive n (%) 2 (13.3) 0 (0) 1 (1.6)
qPCR positive and skin lesions n (%) 2 (13.3) 0 (0) 1 (1.6)

2016
Sex F/M 15/17 (2) 23/12 20/16
Age class Adult/Juveniles 26/1 (7) 32/3 36/0
Skin lesions n (%) 6 (17.6) 1 (2.9) 22 (61.1)
qPCR positive n (%) 4 (11.8) 0 (0) 1 (2.8)
qPCR positive and skin lesions n (%) 2 (5.9) 0 (0) 0 (0)

Figure 3. Relationship between the number of swab applicators collected
per eastern massasauga and the probability of obtaining an Ophidiomyces
DNA negative result when the pathogen is actually present on a snake with
clinical signs (solid line) or a snake without clinical signs (dashed line),
Michigan, USA, 2014–2016. The shaded areas represent 95% confidence
intervals.
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with radio-transmitters compared to 0.07 (4 positive, 54
negative) for snakes without radio-transmitters. Adjusted
point estimates ofOphidiomyces prevalence resulting from the
occupancy model were 0.35 (95% CI¼ 0.11–0.70) for snakes
with radio-transmitters and 0.13 (95% CI¼ 0.04–0.32) for
snakes without radio-transmitters (likelihood ratio test,
x2
1 ¼ 2.213, P¼ 0.137).

DISCUSSION

Snake fungal disease caused by Ophidiomyces ophiodiicola has
been proposed as a threat to wild snake populations, and was
included in the final determination listing the eastern
massasauga as federally threatened (USFWS 2016). How-
ever, estimating Ophidiomyces prevalence and documenting
population-level effects of this pathogen has been elusive
because of the occurrence of false negatives from available
diagnostic tests (Allender et al. 2016a, Lorch et al. 2016).
Our study is the first to account for false negatives, estimate
false-negative probabilities, and provide detection-corrected
estimates of Ophidiomyces prevalence for any wild snake
population. Using novel sampling protocols, single-season
occupancy models, and existing diagnostic tests, we provide a
framework for using non-invasive swabbing to estimate
Ophidiomyces prevalence and quantify population responses
to snake fungal disease.
We demonstrated that Ophidiomyces prevalence varies

across eastern massasauga populations, with Ophidiomyces
prevalence being higher at CG (17%) than at the other 2
localities (3%, ELF and PCCI) we investigated inMichigan.
Restricting our occupancy analysis to CG, point estimates of
Ophidiomyces prevalence were higher for snakes implanted
with radio-transmitters (35%) than for snakes without radio-
transmitters (13%). Although these differences were not
statistically different, the lack of significance may be due to
small sample size and should not be interpreted to mean that
surgical implantation of radio-transmitters has no effect on
Ophidiomyces prevalence. Radio-implantation may increase
the incidence of Ophidiomyces if introduced through non-
sterile surgical techniques (iatrogenic), through creation of a
skin defect allowingOphidiomyces already present to colonize,
or through immune suppression post-surgery (Lentini et al.
2011). Whether Ophidiomyces is part of the normal fungal
flora of eastern massasauga skin, as has been observed with
other similar fungal species on the skin of reptiles, remains
unknown (Pare et al. 2003). Resolution of this question is
necessary to assess the associated risks of surgical procedures,
including diagnostic biopsy.
The larger point estimates of Ophidiomyces prevalence at

CG may be related to sampling bias (17 of 34 snakes at CG
in 2016 had radio-transmitters), local climate, or environ-
mental differences among localities. For example, the average
minimum temperature near CG was lower (3.88C, station
USC00203391) than at weather stations near ELF (8.28C,
station USC00202250), or PCCI (10.98C, station
USC00203661) for the sampling months we estimated
prevalence (Apr–Jun 2016; MRCC 2017). Clinical signs of
SFD were inversely related to mean monthly surface
temperature in a Florida population of pigmy rattlesnakes

(Sistrurus miliarius), with lower temperatures resulting in
clinically more severe SFD symptoms (McCoy et al. 2017).
Our data were not adequately abundant (temporally) to
investigate if this pattern holds for eastern massasaugas.
Future research efforts should incorporate testing environ-
mental samples for Ophidiomyces using environmental DNA
methods to assess what environmental factors (e.g., soil,
water) contribute toOphidiomyces occupancy across localities.
Linking Ophidiomyces prevalence with environmental factors
may be important for establishing management efforts to
reduce disease occurrence.
We provided evidence that the probability of obtaining a

false-negative result for Ophidiomyces DNA using current
diagnostic methods (i.e., swabbing methods and qPCR), is
exceptionally high for snakes with clinical signs (73%) and
snakes without clinical signs (97%) if only one swab
applicator is collected per animal (Fig. 3). However, false-
negative results were reduced by 72% when snakes with
clinical signs were resampled using 5 applicators (Fig. 3). The
probability of obtaining a false negative result reduced to
<5% when snakes with clinical signs were resampled with 10
applicators, whereas snakes without clinical signs needed to
be resampled 93 times to reach this same threshold.
The false negatives detected in our study are likely due

primarily to swabbing methods and the stage of infection
rather than qPCR techniques. The qPCR methods we used
are highly sensitive to Ophidiomyces, detecting the fungal
pathogen with as few as 10 DNA copies present per assay
(Allender et al. 2015b). Still, qPCR methods could have
failed to detect very low concentrations of Ophidiomyces
DNA, or failed during extraction or amplification. Fortu-
nately, occupancy models account for false negatives
regardless of what stage (e.g., swabbing, extraction,
amplification) in the process they occur. If most false
negatives occurred during swabbing as suspected, then future
researchers should work to refine swabbing techniques so
that Ophidiomyces DNA is acquired more consistently. If
Ophidiomyces is only present in the deeper tissues of some
animals, swabbing the skin surface will result in a false
negative regardless of technique or the number of applicators
used. In this scenario, prevalence will be underestimated
because this group of snakes will have a zero probability of
Ophidiomyces being detected.
Using 1 year of data (2014), Allender et al. (2016a)

reported that snakes with clinical signs of SFD (e.g.,
dermatitis) had higher Ophidiomyces DNA detection
probabilities (0.15, 95% CI¼ 0.05–0.38) than snakes
without clinical signs of SFD (0.02, 95% CI¼ 0.00–0.06).
Adding an additional year of data (2015 samples) did not
change these original findings; snakes with clinical signs of
SFD still had higher Ophidiomyces DNA detection proba-
bilities (0.23, 95% CI¼ 0.08–0.51) than snakes without
clinical signs of SFD (0.01, 95% CI¼ 0.00–0.09). However,
we found no support for differences in Ophidiomyces DNA
detection probabilities in 2016 between snakes with clinical
signs of SFD and snakes without clinical signs of SFD (0.22,
95% CI¼ 0.08–0.48). This lack of support may be
methodological rather than biological because the ability
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to identify clinical signs likely increased with researcher
experience over time. In other words, subtler symptoms may
have been included in 2016 than in previous years, resulting
in clinical signs having weaker explanatory power.
Natural systems are complex and are influenced by many

factors including weather, community structure and compo-
sition, changes in land use, and climate. Thus, elucidating the
causal factors of a fungal pathogen like Ophidiomyces will
require increased spatial and temporal sampling efforts
paired with simultaneous animal and environmental sam-
pling. Continued monitoring using the methods described
here will allow for future assessment of the impact of
Ophidiomyces on eastern massasauga and other snake
populations.

MANAGEMENT IMPLICATIONS

Our results demonstrate that Ophidiomyces prevalence differs
among eastern massasauga populations and that the
probability of obtaining anOphidiomycesDNA false-negative
result using swabbing methods is exceedingly high if only 1
swab is collected per animal. To overcome this obstacle, we
recommend future monitoring efforts include repeated
sampling (�5 applicator swabs/snake) and increased sample
sizes (�40 individuals/locality) as a starting point to estimate
locality-specific Ophidiomyces DNA prevalence. After initial
detection and prevalence parameters are estimated, this
sampling regime should be reassessed and calibrated to
obtain the desired estimates of error (MacKenzie and Royle
2005). Alternatively, until the cost of qPCR is reduced, a
more practical and cost effective approach may be to use
clinical signs as a surrogate for SFD. If clinical signs are used
as a proxy for SFD, researchers should standardize diagnosis
of positive and negative clinical signs of SFD by providing
technicians field training and educational materials including
detailed descriptions, photographs, and representative speci-
mens (when possible), and minimize the number of observers
recording clinical signs so documentation remains consistent
across years and study sites.
Another strategy would be to use qPCR and target only

animals with obvious clinical signs. A major drawback to
targeted sampling is that it precludes estimation of site-specific
population-level responses, limiting inference to individual
health or estimation of Ophidiomyces prevalence for the
proportion of the population with clinical signs. However,
targeted sampling of individuals could be used to assess range-
wide responses over time (e.g., changes in Ophidiomyces
occupancy [presence-absence] across populations) without
introducing sampling bias. To get at this coarser grain question,
we recommend theuse of occupancymodels, targeted sampling,
locality-specific covariates, and a range-wide expansion of
sampling efforts to estimate Ophidiomyces occupancy through-
out the eastern massasauga’s distribution and to identify
predictive variables (e.g., temperature, precipitation) important
for explaining Ophidiomyces occupancy. We recommend
minimizing or avoiding the use of radio-telemetry methods
where SFD occurs unless sterile surgical, handling, and
equipment protocols can be ensured and the benefits to the
population from such activities outweigh the increased health

risks to individuals. If these conditions are met, judicious use of
radio-telemetry may be justified.
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